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ON C-DELTA INTEGRALS ON TIME SCALES

Gwang Sik Eun*, Ju Han Yoon**, Young Kuk Kim***,
and Byung Moo Kim****

Abstract. In this paper we introduce the C-delta integral which
generalize the McShane delta integral and investigate some proper-
ties of these integrals.

1. Introduction and preliminaries

The calculus on time scales was introduced for the first time in 1988
by Hilger[5] to unify the theory of difference equations and the theory of
differential equations. It has been extensively studied on various aspects
by several authors [2-4,5]. Surprisingly enough, the McShane integral
has not received attention in the literature of time scales. In 2012, D.
Jhao and X. You [14] introduced the McShane integral on time scales and
some properties of this integral were studied. We introduce the C-delta
integral which generalize the McShane delta integral and investigate
some properties of these integrals.

A time scale T is a nonempty closed subset of real number R with the
subspace topology inherited from the standard topology of R. For t ∈ T
we define the forward jump operator σ(t) by σ(t) = inf{s > t : s ∈ T}
where inf∅ = sup{T}, while the backward jump operator ρ(t) is defined
by ρ(t) = sup{s < t : s ∈ T} where sup∅ = inf{T}. If σ(t) > t, we say
that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered.
If σ(t) = t, we say that t is right-dense, while if ρ(t) = t, we say that
t is left-dense. The forward graininess function µ(t) of t ∈ T is defined
by µ(t) = σ(t)− t, while the backward graininess function ν(t) of t ∈ T
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is defined by ν(t) = t− ρ(t). For a, b ∈ T we denote the closed interval
[a, b]T = {t ∈ T : a ≤ t ≤ b}.

Throughout this paper, all considered intervals will be intervals in
T. A partition D of [a, b]T is a finite collection of interval-point pairs
{([ti−1, ti]T, ξi)}n

i=1, where {a = t0 < t1 < · · · < tn−1 < tn = b} and
ξi ∈ [a, b]T for i = 1, 2, · · · , n. By ∆ti = ti − ti−1 we denote the length
of the ith subinterval in the partition D. δ(ξ) = (δL(ξ), δR(ξ)) is a
∆-gauge of [a, b]T provided δL(ξ) > 0 on (a, b]T, δR(ξ) > 0 on [a, b)T,
δL(a) ≥ 0, δR(b) ≥ 0 and δR(ξ) ≥ µ(ξ) for all ξ ∈ [a, b)T. we say that
D = {([ti−1, ti]T, ξi)}n

i=1 is
(1) δ- fine McShane partition of [a, b]T if [ti−1, ti]T ⊂ [ξi− δL(ξi), ξi +

δR(ξi)]T and ξi ∈ [a, b]T for all i = 1, 2, · · · , n.
(2) δ -fine Henstock partition of [a, b]T if it is a δ-fine McShane par-

tition of [a, b]T and satisfying ξi ∈ [ti−1, ti]T.
(3) δ- fine C- partition of [a, b]T if is a δ- fine McShane partition of

[a, b]T and satisfying the condition
n∑

i=1

dist([ti−1, ti]T, ξi) <
1
ε
,

where dist([ti−1, ti]T, ξi) = inf{|ui − ξi| : ui ∈ [ti−1, ti]T}.
Given a δ -fine C- partition ( McShane partition ) D = {([ti−1, ti]T,

ξi)}n
i=1 we write

S(f,D) =
n∑

i=1

f(ξi)(|[ti−1, ti]T|)

for integral sums over D, whenever f : [a, b]T → R.

Definition 1.1. [14] A function f : [a, b]T → R is McShane delta
integrable (McShane ∆-integrable) on [a, b]T if there is a number A such
that for each ε > 0 there is a ∆-gauge, δ, of [a, b]T such that

|S(f,D)−A| < ε

for each δ -fine McShane partition D = {([ti−1, ti]T, ξi)}n
i=1 of [a, b]T.

A is called the McShane Delta integral of f on [a, b]T, and we write
A = (M)

∫ b
a f(t)∆t.

2. Definitions and basic properties of C-delta integral

Definition 2.1. A function f : [a, b]T → R is C-delta integrable on
[a, b]T if there is a number A such that for each ε > 0 there is a ∆-gauge,
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δ, of [a, b]T such that
|S(f,D)−A| < ε

for each δ -fine C- partition D = {([ti−1, ti]T, ξi)}n
i=1 of [a, b]T. A is

called the C- delta integral of f on [a, b]T, and we write A =
∫ b
a f(t)∆t.

or A = (C)
∫ b
a f(t)∆t.

By the definition of C-delta integral , McShane delta integral and
Henstock delta integral, we get immediately the follwing theorem.

Theorem 2.2.
(1) If f is McShane delta integrable on [a, b]T, then f is C- delta inte-
grable on [a, b]T.

(2) If f is C- delta integrable on [a, b]T, then f is Henstock delta inte-
grable on [a, b]T.

Theorem 2.3. A function f : [a, b]T → R is C-delta integrable on
[a, b]T if and only if for each ε > 0 there is a ∆-gauge, δ, of [a, b]T such
that

|S(f,D1)− S(f,D2)| < ε

for any δ -fine C- partitions D1, D2 of [a, b]T.

Proof. Assume that f : [a, b]T → R is C-delta integrable on [a, b]T.
For each ε > 0 there is a ∆-gauge, δ, of [a, b]T such that

|S(f,D)−
∫ b

a
f(t)∆t| < ε

2

for each δ -fine C- partition D = {([ti−1, ti]T, ξi)}n
i=1 of [a, b]T. If D1, D2

are δ -fine C- partitions of [a, b]T, then

|S(f,D1)−S(f,D2)| ≤ |S(f,D1)−
∫ b

a
f(t)∆t|+|S(f,D2)−

∫ b

a
f(t)∆t| < ε.

Conversely, assume that for each ε > 0 there is a ∆-gauge, δ, of [a, b]T
such that

|S(f,D1)− S(f,D2)| < ε

for any δ -fine C- partitions D1, D2 of [a, b]T. Assume that {δn} is
decreasing. For each n ∈ N , let Dn be a δn -fine C- partition of [a, b]T.
Then {S(f, Dn)} is a Cauchy sequence . Let A = limn→∞ S(f,Dn) and
let ε > 0. Choose N such that 1

N < ε
2 and |S(f,Dn) − A| < ε

2 for all
n ≥ N . Let let D be a δN -fine C- partition of [a, b]T. Then
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|S(f,Dn)−A| ≤ |S(f,D)− S(f,DN )|+ |S(f,DN )−A|
<

1
N

+
ε

2
<

ε

2
+

ε

2
= ε > 0.

Hence, f is C-delta integrable on [a, b]T and A =
∫ b
a f(t)∆t.

We can easily get the following theorems.

Theorem 2.4. Let f : [a, b]T → R be a function. Then
(1) If f is C-delta integrable on [a, b]T, then f is C- delta integrable on
every subinterval [c, d]T of [a, b]T.

(2) If f is C-delta integrable on [a, c]T and [c, b]T, then f is C-delta
integrable on [a, b]T and

∫ b

a
f(t)∆t =

∫ c

a
f(t)∆t +

∫ b

c
f(t)∆t.

Theorem 2.5. Let f and g be C-delta integrable functions on [a, b]T.
Then

(1) kf is C-delta integrable on [a, b]T and
∫ b
a kf(t)∆t = k

∫ b
a f(t)∆t for

each k ∈ R.
(2) f+g is C-delta integrable on [a, b]T and

∫ b
a (f(t)+g(t))∆t =

∫ b
a f(t)∆t

+
∫ b
a g(t)∆t.

Lemma 2.6. (Saks-Henstock) Let f : [a, b]T → R be C-Delta inte-
grable on [a, b]T. Then for each ε there is a ∆-gauge, δ, of [a, b]T such
that

|S(f,D)−
∫ b

a
f(t)∆t| < ε

for each δ-fine C-partition D of [a, b]T. Particularly, if D′ = {([ti−1,
ti]T, ξi)}m

i=1 is an arbitrary δ-fine partial C-partition of [a, b]T, we have

|S(f,D′)−
m∑

i=1

∫ ti

ti−1

f(t)∆t| ≤ ε.

Proof. Assume that D′ = {([ti−1, ti]T, ξi)}m
i=1 is an arbitrary δ-fine

partial C-partition of [a, b]T. Let [a, b]T − ∪m
i=1[ti−1, ti]T = ∪k

j=1[uj−1, uj ]T.
Let η > 0. Since f is C-delta integrable on each [uj−1, uj ]T, there is

∆-gauge, δj , of [uj−1, uj ]T such that

|S(f, Dj)−
∫ uj

uj−1

f(t)∆t| < η

κ



On C-delta integrals on time scales 353

for each δj-fine C− partition Dj of [uj−1, uj ]T.
Assume that δj(ξ) ≤ δ(ξ) for all ξ ∈ [uj−1, uj ]T. Let D0 = D′ ∪D1 ∪

· · · ∪Dk. Then D0 is a δ-fine C-partition of [a, b]T and we have

|S(f, D0)−
∫ b

a
f(t)∆t| = |S(f, D′) +

k∑

j=1

S(f, Dj)−
∫ b

a
f(t)∆t| < ε

Consequently, we have

|S(f, D′)−
m∑

i=1

∫ ti

ti−1

f(t)∆t|

= |S(f, D0)−
k∑

j=1

S(f,Dj)− (
∫ b

a
f(t)∆t−

k∑

j=1

∫ uj

uj−1

f(t)∆t)|

≤ |S(f, D0)−
∫ b

a
f(t)∆t|+

k∑

j=1

|S(f, [uj−1, uj ]T)−
∫ uj

uj−1

f(t)∆t|

< ε + k · η

k
= ε + η.

Since η > 0 was arbitrary, we have |S(f,D′)−∑m
i=1

∫
Ii

f(t)∆t| ≤ ε

Lemma 2.7. Let f : [a, b]T → R be C- delta integrable on [a, b]T.
Given ε > 0, let δ be ∆-gauge function on [a, b]T such that |S(f,D) −∫ b
a f∆t| < ε for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}m

i=1 of [a, b]T.
If D = {([ti−1, ti]T, xi)}n

i=1 and {([uj−1, uj ]T, yj); 1 ≤ j ≤ m} are δ-fine
C-partitions of [a, b]T, then

n∑

i=1

m∑

j=1

|f(xi)− f(yj)|µ([ti−1, ti]T ∩ [uj−1, uj ]T) < 2ε.

Proof. The nondegenerate intervals of the collection

{[ti−1, ti]T ∩ [uj−1, uj ]T : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
form a partition of [a, b]T. Using these intervals, we form two C-partitions
D1 and D2 of [a, b]T as follows:

if f(xi) ≥ f(yj), then put ([ti−1, ti]T ∩ [uj−1, uj ]T, xi) ∈ D1 and
([ti−1, ti]T ∩ [uj−1, uj ]T, yj) ∈ D2.

if f(xi) < f(yj), then put ([ti−1, ti]T ∩ [uj−1, uj ]T, yj) ∈ D1 and
([ti−1, ti]T ∩ [uj−1, uj ]T, xi) ∈ D2. Note that S(f, D1) − S(f, D2) =∑n

i=1

∑m
j=1 |f(xi)− f(yj)|µ([ti−1, ti]T ∩ [uj−1, uj ]T).
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Since D1 and D2 are δ-fine C-partition of [a, b]T,

S(f, D1) − S(f,D2)

≤ |S(f,D1)−
∫ b

a
f(t)∆t|+ |

∫ b

a
f(t)∆t− S(f, D2)|

≤ 2ε

Theorem 2.8. If f : [a, b]T → R is C-delta integrable on [a, b]T, then
|f | is C-delta integrable on [a, b]T.

Proof. Let ε > 0 and choose a ∆-gauge, δ, of [a, b]T such that

|S(f,D)−
∫ b

a
f(t)∆t| < ε

2

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}n
i=1 of [a, b]T. We will

show that |f | satisfies the Cauchy criterion for C-delta integrability. Let
D1 = {[ti−1, ti]T, ξi)}n

i=1 and D2 = {([uj−1, uj ]T, yj)}m
j=1 be δ-fine C-

partitions of [a, b]T. Let D′
1 = {([ti−1, ti]T ∩ [uj−1, uj ]T, xi) : 1 ≤ i ≤

n , 1 ≤ j ≤ m} and D′
2 = {([ti−1, ti]T ∩ [uj−1, uj ]T, yj) : 1 ≤ i ≤ n , 1 ≤

j ≤ m}, then D′
1 and D′

2 are δ-fine C-partitions of [a, b]T and

S(|f |, D′
1) =

n∑

i=1

m∑

j=1

|(f(xi)|µ([ti−1, ti]T ∩ [uj−1, uj ]T)

=
n∑

i=1

|f(xi)|µ(Ii) = S(|f |, D1)

S(|f |, D′
2) =

m∑

j=1

n∑

i=1

|(f(yi)|µ([ti−1, ti]T ∩ [uj−1, uj ]T)

=
m∑

j=1

|f(yi)|µ([uj−1, uj ]T) = S(|f |, D2)

Using the previous lemma, we obtain

|S(|f |, D1)− S(|f |, D2)| = |S(|f |, D′
1)− S(|f |, D′

2)|

≤
n∑

i=1

m∑

j=1

||f(xi)| − |f(yj)||µ([ti−1, ti]T ∩ [uj−1, uj ]T)
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≤
n∑

i=1

m∑

j=1

|f(xi)− f(yj)|µ(Ii ∩ [uj−1, uj ]T)

< 2 · ε

2
= ε

Hence, the function |f | is C-delta integrable on [a, b]T.

Definition 2.9. Let F : [a, b]T → R and let E be a subset of [a, b]T.
(1) F is said to be ACC on E if for each ε > 0 there is a constant η > 0
and a ∆-gauge, δ, of [a, b]T such that |∑i=1 F ([ti−1, ti]T)| < ε for each
δ -fine C- partition D = {([ti−1, ti]T, ξi)}n

i=1 of [a, b]T and ξi ∈ E and∑
i=1 |[ti−1, ti]T| < η.

(2) F is said to be ACGC on E if F is continuous on E and E can be
expressed as a countable union of sets on each of which F in ACC .

Theorem 2.10. If a function f : [a, b]T → R is C-delta integrable on
[a, b]T with primitive F , then F is ACGC on [a, b]T.

Proof. By the definition of the C- delta integral and by the Saks-
Henstock Lemma, F is continuous on [a, b]T and for each ε > 0 there is
a ∆-gauge, δ, for [a, b]T such that

|
n∑

i=1

[f(ξi)(|[ti−1, ti]T|)− F ([ti−1, ti]T)]| ≤ ε

for each δ -fine partial C- partition D = {([ti−1, ti]T, ξi)}n
i=1 of [a, b]T.

Assume that En = {ξ ∈ [a, b]T : n− 1 ≤ |f(ξ)| < n} for each n ∈ N .
Then we have [a, b]T = ∪En. To show that F is ACC on each En, fix
n and take a δ -fine C- partition D0 = {([ti−1, ti]T, ξi)}n

i=1 of En T and
ξi ∈ En for all i. If

∑n
i=1 |[ti−1, ti]T| ≤ ε

n , then

|
∑

i=1

F ([ti−1, ti]T)| ≤ |
∑

i=1

[F ([ti−1, ti]T − f(ξi)|[ti−1, ti]T|]|

+
∑

i=1

|f(ξi)|[ti−1, ti]T||[ti−1, ti]T|

≤ ε + n
∑

i

|[ti−1, ti]T| < 2ε.
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